Bayesian dynamic modelling for nonstationary hydroclimatic time series forecasting along with uncertainty quantification
نویسندگان
چکیده
Forecasting of hydrologic time series, with the quantification of uncertainty, is an important tool for adaptive water resources management. Nonstationarity, caused by climate forcing and other factors, such as change in physical properties of catchment (urbanization, vegetation change, etc.), makes the forecasting task too difficult to model by traditional Box–Jenkins approaches. In this paper, the potential of the Bayesian dynamic modelling approach is investigated through an application to forecast a nonstationary hydroclimatic time series using relevant climate index information. The target is the time series of the volume of Devil’s Lake, located in North Dakota, USA, for which it was proved difficult to forecast and quantify the associated uncertainty by traditional methods. Two different Bayesian dynamic modelling approaches are discussed, namely, a constant model and a dynamic regression model (DRM). The constant model uses the information of past observed values of the same time series, whereas the DRM utilizes the information from a causal time series as an exogenous input. Noting that the North Atlantic Oscillation (NAO) index appears to co-vary with the time series of Devil’s Lake annual volume, its use as an exogenous predictor is explored in the case study. The results of both the Bayesian dynamic models are compared with those from the traditional Box–Jenkins time series modelling approach. Although, in this particular case study, it is observed that the DRM performs marginally better than traditional models, the major strength of Bayesian dynamic models lies in the quantification of prediction uncertainty, which is of great value in hydrology, particularly under the recent climate change scenario. Copyright 2008 John Wiley & Sons, Ltd.
منابع مشابه
Bayesian Forecasting
Bayesian Forecasting encompasses statistical theory and methods in time series analysis and time series forecasting, particularly approaches using dynamic and state space models, though the underlying concepts and theoretical foundation relate to probability modelling and inference more generally. This entry focuses speciically in the time series and dynamic modelling domain, with mention of re...
متن کاملTime series forecasting of Bitcoin price based on ARIMA and machine learning approaches
Bitcoin as the current leader in cryptocurrencies is a new asset class receiving significant attention in the financial and investment community and presents an interesting time series prediction problem. In this paper, some forecasting models based on classical like ARIMA and machine learning approaches including Kriging, Artificial Neural Network (ANN), Bayesian method, Support Vector Machine...
متن کاملDynamic Matrix-Variate Graphical Models
This paper introduces a novel class of Bayesian models for multivariate time series analysis based on a synthesis of dynamic linear models and graphical models. The synthesis uses sparse graphical modelling ideas to introduce structured, conditional independence relationships in the time-varying, cross-sectional covariance matrices of multiple time series. We define this new class of models and...
متن کاملA System for Monitoring Damage in Composite Materials Using Statistical Calibrations and Bayesian Model Selection
This chapter summarizes the results of a feasibility study exploring the development of a stochastic Dynamic Data-Driven Application System (DDDAS) for prediction and monitoring of material damage in composite materials common to many types of contemporary high-performance military aircraft. The methodology involves (1) acquiring data from mechanical experiments conducted on a composite materia...
متن کاملSome New Methods for Prediction of Time Series by Wavelets
Extended Abstract. Forecasting is one of the most important purposes of time series analysis. For many years, classical methods were used for this aim. But these methods do not give good performance results for real time series due to non-linearity and non-stationarity of these data sets. On one hand, most of real world time series data display a time-varying second order structure. On th...
متن کامل